Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8VLT_1)}(2) \setminus P_{f(2BIG_1)}(2)|=58\),
\(|P_{f(2BIG_1)}(2) \setminus P_{f(8VLT_1)}(2)|=108\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010110011010011001010000010010001111100111111011111010000000010101110101000100101010010100011000101110100011001101011010010001101111110000001101111011000110110101001110011001111100011001001101100011000010010001000010001010
Pair
\(Z_2\)
Length of longest common subsequence
8VLT_1,2BIG_1
166
4
8VLT_1,3MGY_1
190
4
2BIG_1,3MGY_1
152
4
Newick tree
[
8VLT_1:93.18,
[
2BIG_1:76,3MGY_1:76
]:17.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{583
}{\log_{20}
583}-\frac{222}{\log_{20}222})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8VLT_1
2BIG_1
127
102
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]