Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8VFR_1)}(2) \setminus P_{f(6RVA_1)}(2)|=174\),
\(|P_{f(6RVA_1)}(2) \setminus P_{f(8VFR_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000010010111000011011101101011001010000100111110100101011100101011100100100001111001000011011011101011100010111001101101001001111110101001100101011101101011011101111000100011101111101111100100011000110010100000010111111110101100010101001111100110111000101111110011011101001000101100110011010011001100000010111111101001111110100010010010100100000101111011010110111010101110111001111010111000100010110011101011
Pair
\(Z_2\)
Length of longest common subsequence
8VFR_1,6RVA_1
197
3
8VFR_1,8JDT_1
160
4
6RVA_1,8JDT_1
213
3
Newick tree
[
6RVA_1:10.07,
[
8VFR_1:80,8JDT_1:80
]:29.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{481
}{\log_{20}
481}-\frac{71}{\log_{20}71})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8VFR_1
6RVA_1
158
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]