Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8UYJ_1)}(2) \setminus P_{f(1STD_1)}(2)|=14\),
\(|P_{f(1STD_1)}(2) \setminus P_{f(8UYJ_1)}(2)|=134\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111101001010000111010000101100101101010010000100111010101101100011010101001010000001011001101011000000111101011111101110101111011110000
Pair
\(Z_2\)
Length of longest common subsequence
8UYJ_1,1STD_1
148
2
8UYJ_1,7GXW_1
110
2
1STD_1,7GXW_1
170
3
Newick tree
[
1STD_1:86.36,
[
8UYJ_1:55,7GXW_1:55
]:31.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{307
}{\log_{20}
307}-\frac{135}{\log_{20}135})=53.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
8UYJ_1
1STD_1
80
58
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]