8UMF_1|Chain A|Cas9|Parasutterella secunda (626947)
>5AKV_1|Chains A, B|TRANSTHYRETIN|Homo sapiens (9606)
>7TQF_1|Chain A|Nitrogenase iron protein 1|Azotobacter vinelandii (354)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8UMF_1)}(2) \setminus P_{f(5AKV_1)}(2)|=236\),
\(|P_{f(5AKV_1)}(2) \setminus P_{f(8UMF_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1110100010100100100000101000111011100011100000011101001010110110001100011100000001000001111001001110101000101000011001100010001000101011011001110011101000001100100100101000000000101110000000011011000000000000110110001001100011100000101011100110000101110110110010011101001010110101001010001100001001110100110010010000101101001100110010010101011100000000111000111010110000100101110011001100110001001110000010110000101100000010000110011000100010110011000010000100100010001100010011011000000100100111111001110010101110000111011101101001101011000101000100100110000000100100100011010001001010000110100011110011101101000000011011011010011000001110001111000110001010100101010010110111001100010011010100110001000010111110000111010110100010011100011010000000110000010010011010010011001010011100101001101100010110000010010101000100110001011110100101000100010010010110101100000011001111001001000110111010010101001111001100100100010100010111010010100100000001111000110100000111001101101111100000110111110011000010011011100101101000011000011001110011110011111101000011101000101010010011111011100000001011000010010110110011101000011001011001001000101001001100010000011000010101011001101010101110001001100001001100010001000010100110011001110010001000110110110100110100000010010010110000001111000111010001110100010101101001010001010010010010001110101100100010100000010010101010110011010100001101100001111101001010110110010010010000011001000101101000110100000000000010100101000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1589
}{\log_{20}
1589}-\frac{127}{\log_{20}127})=385.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8UMF_1
5AKV_1
487
263.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]