8UHE_1|Chains A, E, G, M, O, Q|ApcD5|Synechococcus sp. PCC 7335 (91464)
>5MYA_1|Chains A, B|Angiopoietin-1 receptor|Homo sapiens (9606)
>5THN_1|Chain A|Carbonic anhydrase 2|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8UHE_1)}(2) \setminus P_{f(5MYA_1)}(2)|=58\),
\(|P_{f(5MYA_1)}(2) \setminus P_{f(8UHE_1)}(2)|=126\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110011101000100111001011001100100010110111100001100100011000100100011000010000001101011100111100011001101110010001011100110010010001111100001001110101110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{491
}{\log_{20}
491}-\frac{158}{\log_{20}158})=97.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
8UHE_1
5MYA_1
125
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]