Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8TZS_1)}(2) \setminus P_{f(3RTV_1)}(2)|=99\),
\(|P_{f(3RTV_1)}(2) \setminus P_{f(8TZS_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111110010000101111111110111111111111110011001010010100000000111111100000100100111001010011101011110101011101111110101110100010001010101011000011101001100011001000100100100010000001111101101100101101011100000101111010010111100011100111110011010111111101001011001111100111111101011011101101110101111110100111011110111110100110000000111010011111110101111010001101001100110001100111111111110101011110111101100101000011110010010001111010111110110111011111100100101011110101001110110111010111111101100000100000101110010010100010010110010010000100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1081
}{\log_{20}
1081}-\frac{540}{\log_{20}540})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8TZS_1
3RTV_1
184
178.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]