Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8TRN_1)}(2) \setminus P_{f(8IZL_1)}(2)|=79\),
\(|P_{f(8IZL_1)}(2) \setminus P_{f(8TRN_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100010111100101010111110011011110111010011111110000001100100001110100110011100100100110001000101110001111001110101000010011100101111011101110100010001111001011000111001011101110101110010001101100010110001000110010001001110100010110000010000011010110110001001011101011100111100001001100010100010101110110010011100100010011100101011111000001111101100100100111000000001101100001
Pair
\(Z_2\)
Length of longest common subsequence
8TRN_1,8IZL_1
148
4
8TRN_1,7GGH_1
175
3
8IZL_1,7GGH_1
169
4
Newick tree
[
7GGH_1:89.66,
[
8TRN_1:74,8IZL_1:74
]:15.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{767
}{\log_{20}
767}-\frac{376}{\log_{20}376})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8TRN_1
8IZL_1
135
132
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]