Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8TLY_1)}(2) \setminus P_{f(7GOL_1)}(2)|=101\),
\(|P_{f(7GOL_1)}(2) \setminus P_{f(8TLY_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100100111111001010011101000111000100110001100100101011111110000100000110000001100101101101011110010001111011010101001000100110011001010111100100101010110011000101010001001010011000001010011011001011010100101000101001100100101010
Pair
\(Z_2\)
Length of longest common subsequence
8TLY_1,7GOL_1
174
3
8TLY_1,8PBW_1
156
4
7GOL_1,8PBW_1
158
3
Newick tree
[
7GOL_1:84.72,
[
8TLY_1:78,8PBW_1:78
]:6.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{427
}{\log_{20}
427}-\frac{182}{\log_{20}182})=72.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
8TLY_1
7GOL_1
90
78.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]