Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8TAN_1)}(2) \setminus P_{f(5RXI_1)}(2)|=114\),
\(|P_{f(5RXI_1)}(2) \setminus P_{f(8TAN_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0101111010000001001000011010101111001000000011010110001111011110011011101011011011000111110100100111001001001110100010100100101011101100001110011000101011010001100000100000000100000001010001001000000000100110001100001011000000111011101100001011001000101011010000001111001001000101110010001001100110101000000000100100101101001101011101001001100100111110110101010000111010110010111100010100010110000100110100001010110101110101010010010010100100001010000010010000011010000000001110100001100001101010000111001000010010100010110101110001011111011011000110101101011000010110001101000101101110110100000011101011011010100011010001001010000000000111000101010100100010001011001100101000100010000100001100110001111010000001101100010000000011000010010010000111000100000011001011010010100000010011001001111001110110011111010101000111011010010111110010010010000001000000001110100101100010101001010101001111010100100011001001000100110000010001101001110000000011000010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1415
}{\log_{20}
1415}-\frac{463}{\log_{20}463})=243.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8TAN_1
5RXI_1
310
230
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]