Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8SMK_1)}(2) \setminus P_{f(5QOW_1)}(2)|=192\),
\(|P_{f(5QOW_1)}(2) \setminus P_{f(8SMK_1)}(2)|=15\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000010111001101001010000101010010101101010010011011101001010001100000101010111110110111100000100011101110101010110100100010100011001110111010110101010100010101001100000101110101111110000001000110000001100001001011010000100110000111011000100101101001010000011111011000111111000101010111110001111101010110000101101111000111011111101000110010100110000110010011101000101010000100011000101101011000111110010001100111001111011010011001110110011010101110101000111011110000100000010011001101001011101000110110100110111110001101111010000011000000101011110110000000100110000100000110001010001100011110001101101101001001011110110111110011110111111010001000100110111100011001100010010100100100011010110111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{862
}{\log_{20}
862}-\frac{167}{\log_{20}167})=193.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8SMK_1
5QOW_1
248
151.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]