Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8SHA_1)}(2) \setminus P_{f(2JJZ_1)}(2)|=152\),
\(|P_{f(2JJZ_1)}(2) \setminus P_{f(8SHA_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000111011100000100011011100000100000010111001100000110100010010101000010100101001100101110111000001010100110101000000110000010111100100000011011001111010110101110111000001011010000011100001110000101001000010110101010011101001011001010110110101110001001101100001111010010010110000001001000101011101000100010010100011100000111110010101010111110000010110110100101111000010010101010110010100010111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{545
}{\log_{20}
545}-\frac{150}{\log_{20}150})=115.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8SHA_1
2JJZ_1
146
100
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]