Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8SGL_1)}(2) \setminus P_{f(1GBX_1)}(2)|=151\),
\(|P_{f(1GBX_1)}(2) \setminus P_{f(8SGL_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01110111000010010000111110110110001111110011100110101000110110110100111011001101000011010001111110110010011000101001101001100011001000111000011000110110001000111101011101110111110000101010011001011010100010011101011001110011100110101101010100001011101110010010010000001000010011101101110011100101001101111110011000100110101101100110101000101111101001100010000111100001000101110110011000100010011011001100001111111101110101000100110000111101100111110011101100000111010110001010100001011110100101000001111010110100101100111011010011010100
Pair
\(Z_2\)
Length of longest common subsequence
8SGL_1,1GBX_1
182
5
8SGL_1,6HVR_1
158
4
1GBX_1,6HVR_1
176
3
Newick tree
[
1GBX_1:92.75,
[
8SGL_1:79,6HVR_1:79
]:13.75
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{666
}{\log_{20}
666}-\frac{130}{\log_{20}130})=154.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8SGL_1
1GBX_1
189
115.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]