Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8SCX_1)}(2) \setminus P_{f(1GON_1)}(2)|=34\),
\(|P_{f(1GON_1)}(2) \setminus P_{f(8SCX_1)}(2)|=139\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100000101111100111111111111111011011000111001011101101011111101111111100100110110000011011111110111111011100000001001011111011111100011101011111110110001101
Pair
\(Z_2\)
Length of longest common subsequence
8SCX_1,1GON_1
173
3
8SCX_1,2DSF_1
179
4
1GON_1,2DSF_1
170
4
Newick tree
[
8SCX_1:88.99,
[
1GON_1:85,2DSF_1:85
]:3.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{637
}{\log_{20}
637}-\frac{158}{\log_{20}158})=137.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8SCX_1
1GON_1
167
111
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]