Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8RGA_1)}(2) \setminus P_{f(8SXF_1)}(2)|=68\),
\(|P_{f(8SXF_1)}(2) \setminus P_{f(8RGA_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000001100000000010111111000010010111111101100110111111000110110100101001111111111011101010011000100110110011100110111001000101001001000011100110001011101110111010111110101011111111111111111100110100000000101011100111010110100100100101011100110111001010011111101111111111110111010010101111111110110111111010011001000111000110111000000101001001011101001011001001110010111011010111110111000110110010010110101100110000100100011010000111010100010011000100101001101101101100110010001100111101100001111011100101111011000100000001001101110100011110010011010011110010101010000111001100011000101010100011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1002
}{\log_{20}
1002}-\frac{403}{\log_{20}403})=158.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8RGA_1
8SXF_1
199
164
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]