Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8RBL_1)}(2) \setminus P_{f(3RBM_1)}(2)|=65\),
\(|P_{f(3RBM_1)}(2) \setminus P_{f(8RBL_1)}(2)|=98\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01101010000000100100011111101011000101000010100101101011100101011101101101111111011000010111101000000000001111100001010101100100010011010110110000010110000011100101110011000001100011110100101101100011111011001011001011110100101100001001011110101100011110000100011001010100100111011010100
Pair
\(Z_2\)
Length of longest common subsequence
8RBL_1,3RBM_1
163
4
8RBL_1,6GPP_1
144
4
3RBM_1,6GPP_1
149
13
Newick tree
[
3RBM_1:80.00,
[
8RBL_1:72,6GPP_1:72
]:8.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{683
}{\log_{20}
683}-\frac{287}{\log_{20}287})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8RBL_1
3RBM_1
138
120
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]