8QXA_1|Chains A, B, C, D, E, F, G, H, I, J, K, L|TAR DNA-binding protein 43|Homo sapiens (9606)
>8SGG_1|Chains A, C|Cy137D09 Fab heavy chain|Macaca fascicularis (9541)
>2CSS_1|Chain A|Regulating synaptic membrane exocytosis protein 1|Homo sapiens (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8QXA_1)}(2) \setminus P_{f(8SGG_1)}(2)|=132\),
\(|P_{f(8SGG_1)}(2) \setminus P_{f(8QXA_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010100000001101100001011100101011110110000110001011011011101101111011011001000000100001001101001100000111111110000001000100110111101000100100011111010000001011000011010100001100000000110000111100000100001001100010110111101101111101100011001010011101101010010100000001000101110111110011110001111111000100111110111101011111110111000111111110000001101000001010001001110100000100011111110100110101101111001000001111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{646
}{\log_{20}
646}-\frac{232}{\log_{20}232})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8QXA_1
8SGG_1
145
112
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]