Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8QRH_1)}(2) \setminus P_{f(6VXR_1)}(2)|=102\),
\(|P_{f(6VXR_1)}(2) \setminus P_{f(8QRH_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000001000011010010001011101110101010101010111001000011000000101010000111001011110110000010100000000111000111101011001010001000101010010011001010100100111000001000101010000011011001010110011011011001110100000011011010001100111110001100100100110111101101010011000111100111111101010000100101000111001010110001000001010011000100011101110100100111011101010101111101011100011111010111100110110100011001001101100000110010111001101101111100110110011111100111111111011111111111101001010101111111111101
Pair
\(Z_2\)
Length of longest common subsequence
8QRH_1,6VXR_1
168
4
8QRH_1,8BRI_1
186
4
6VXR_1,8BRI_1
170
4
Newick tree
[
8BRI_1:90.72,
[
8QRH_1:84,6VXR_1:84
]:6.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{831
}{\log_{20}
831}-\frac{339}{\log_{20}339})=133.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8QRH_1
6VXR_1
170
144.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]