Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8QFV_1)}(2) \setminus P_{f(7BAW_1)}(2)|=138\),
\(|P_{f(7BAW_1)}(2) \setminus P_{f(8QFV_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111001101101010011001001001100111010001101001110011000000001000000100100010111001000110011100001000111000011000010001000111101010010000011010101101010100011111000100110010001101010001110111111000110101001100011110101111111100110101011110001110010000111000100100010011110111011
Pair
\(Z_2\)
Length of longest common subsequence
8QFV_1,7BAW_1
146
2
8QFV_1,1ADB_1
160
4
7BAW_1,1ADB_1
206
2
Newick tree
[
1ADB_1:97.79,
[
8QFV_1:73,7BAW_1:73
]:24.79
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{309
}{\log_{20}
309}-\frac{32}{\log_{20}32})=90.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
8QFV_1
7BAW_1
109
58.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]