Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8PXB_1)}(2) \setminus P_{f(7HIB_1)}(2)|=169\),
\(|P_{f(7HIB_1)}(2) \setminus P_{f(8PXB_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000010001110111101111101101111000010110001111101111111100101100100101000101110100111010001000000001000010101101110010101011101111111101100100001100110110011110110011111110111011101101001010100011110110100110111110010101010011110011001111110001010010001011011111001101111111011110101110111001001001111001111110101110101111011111110110010000001010001000011011011100111001111110100011011111111111111010010110111011000011101001111011011111111100000010011100011111101111111001110110101110100010001000001001000000000111101101100001011100011110001101011100110010101001001001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{737
}{\log_{20}
737}-\frac{163}{\log_{20}163})=162.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8PXB_1
7HIB_1
199
128
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]