Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8PAM_1)}(2) \setminus P_{f(9CVD_1)}(2)|=86\),
\(|P_{f(9CVD_1)}(2) \setminus P_{f(8PAM_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011001110101011111011100101010010100111101010011011100110001011101001111001001111001111000111110100011111001100010000111101101111100101000011010100110001011000101101111011011110000011101101011011011001000011011010110110010010000101011111011111101100010110100000110
Pair
\(Z_2\)
Length of longest common subsequence
8PAM_1,9CVD_1
180
3
8PAM_1,5KCV_1
178
3
9CVD_1,5KCV_1
196
3
Newick tree
[
9CVD_1:95.72,
[
8PAM_1:89,5KCV_1:89
]:6.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{486
}{\log_{20}
486}-\frac{220}{\log_{20}220})=76.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
8PAM_1
9CVD_1
96
91.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]