Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8OUE_1)}(2) \setminus P_{f(1GMK_1)}(2)|=233\),
\(|P_{f(1GMK_1)}(2) \setminus P_{f(8OUE_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101011111000000000001100011010010011101000110100001111100100101000000111010011000110010011101001001000011111001101000100101010101011101001001100000110001111010011011001001100101111001111111000101001000011000100011111100011001001010111111111010010010011100000110100110101100000000010011011001100000111000110110011011111110000110100011110001011011111100111000001111010011100000100111110100001110011100010100001101000010000010001110110110111011001000000000000011111011000000000000101110011011010000000000000100101100
Pair
\(Z_2\)
Length of longest common subsequence
8OUE_1,1GMK_1
236
3
8OUE_1,2EFN_1
192
3
1GMK_1,2EFN_1
118
3
Newick tree
[
8OUE_1:11.44,
[
2EFN_1:59,1GMK_1:59
]:60.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{530
}{\log_{20}
530}-\frac{16}{\log_{20}16})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8OUE_1
1GMK_1
198
101
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]