Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8OSH_1)}(2) \setminus P_{f(6FOF_1)}(2)|=111\),
\(|P_{f(6FOF_1)}(2) \setminus P_{f(8OSH_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000101000101001111101111000101111101101011111111001010000101110111011111001100010010110001000010110111010010110111110000101010100110011011011111010011101001011000110111001101100100011010011011111010100101010110011101010010011101011000001000110110000100011000110100111010100010101001000101011010110001101101001000101001001101010001000110010010010011101111011000000001110100110
Pair
\(Z_2\)
Length of longest common subsequence
8OSH_1,6FOF_1
160
5
8OSH_1,2XVR_1
140
4
6FOF_1,2XVR_1
166
4
Newick tree
[
6FOF_1:85.00,
[
8OSH_1:70,2XVR_1:70
]:15.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{576
}{\log_{20}
576}-\frac{196}{\log_{20}196})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8OSH_1
6FOF_1
133
101.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]