Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8OJQ_1)}(2) \setminus P_{f(6EOB_1)}(2)|=108\),
\(|P_{f(6EOB_1)}(2) \setminus P_{f(8OJQ_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001100010011010101001111010000011000111100110110010100100010010000100010001001001101100101100111101100110110110010110000100100101100001000001000100111010001001101100001011101010001000110001010001101010010100000100110001011100001000110100010111001000110111011001001100111000110011110100111100010101010100010111011110101001001110101100000101010010100000110001011001100010011110100010000001001100100011101011010011011010000100010011101011011001001110110101000000000110110001011000010000000111001010011110011000011011001011101110011101101101100111101100000100110111110011010111111101101010000101000111100001001101011101001000110110001101011010110110111100111100110010101010101011000110001010010010110100110111010101011100111110000001110010110010110101001010110010000101110010111111111000101111111101100110001001011001000111101010110111101011111100011100011111001010100000111001100011010101000101000010010100100100100100010101010001100001100110101000011110001110101111110001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1496
}{\log_{20}
1496}-\frac{522}{\log_{20}522})=246.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8OJQ_1
6EOB_1
317
240
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]