Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JTA_1)}(2) \setminus P_{f(1SBO_1)}(2)|=163\),
\(|P_{f(1SBO_1)}(2) \setminus P_{f(8JTA_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001111111111110011101111111001001000001001001011001010001001100000001101010001010001000110010111000100000110001011111100101011001111110001101111111101111001111100001111110010111000001111111101000000010111111111111111111110110011100111111111111011101111010010100001011001100101111110101101111110111111110010000101111111101001110011111100110110111111111101101111001011111011111111110001111110110100101010101110111011011110111111011111111011111011111101110011
Pair
\(Z_2\)
Length of longest common subsequence
8JTA_1,1SBO_1
191
3
8JTA_1,7AVK_1
191
3
1SBO_1,7AVK_1
114
3
Newick tree
[
8JTA_1:10.24,
[
1SBO_1:57,7AVK_1:57
]:48.24
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{567
}{\log_{20}
567}-\frac{110}{\log_{20}110})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JTA_1
1SBO_1
172
105.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]