Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JNP_1)}(2) \setminus P_{f(1FIB_1)}(2)|=101\),
\(|P_{f(1FIB_1)}(2) \setminus P_{f(8JNP_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001111011110110101101010001110101101001111000001001110101011101100010101110011111000110000100111001010010110101101100110111111011011001111110011001111110000111011001101101001110010111001111101010011001101110100001110000110110011111110000011011001110100100100010111011001100111101101100101010111101011011111011100010110010011100110101111011000111011010101110011001111011110001010001110110111111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{665
}{\log_{20}
665}-\frac{269}{\log_{20}269})=110.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JNP_1
1FIB_1
139
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]