CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
8JLA_1 8BCA_1 1HFO_1 Letter Amino acid
3 52 4 H Histidine
3 48 2 M Methionine
4 66 7 F Phenylalanine
14 88 3 R Arginine
4 94 7 D Aspartic acid
7 129 1 E Glutamic acid
6 83 11 G Glycine
7 112 8 I Isoleucine
7 108 5 K Lycine
12 104 6 A Alanine
1 70 11 N Asparagine
0 19 1 W Tryptophan
3 61 2 Y Tyrosine
6 123 6 V Valine
2 25 0 C Cysteine
6 84 2 Q Glutamine
11 206 10 L Leucine
5 79 6 P Proline
5 101 11 S Serine
6 95 10 T Threonine

8JLA_1|Chains A, E|Histone H3.1|Homo sapiens (9606)
>8BCA_1|Chain A[auth B]|U5 small nuclear ribonucleoprotein 200 kDa helicase|Homo sapiens (9606)
>1HFO_1|Chains A, B, C, D, E, F|MIGRATION INHIBITORY FACTOR|TRICHINELLA SPIRALIS (6334)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
8JLA , Knot 59 112 0.82 38 99 109
GSHMSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIAQDFKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA
8BCA , Knot 597 1747 0.85 40 363 1428
GAEFMDLDQGGEALAPRQVLDLEDLVFTQGSHFMANKRCQLPDGSFRRQRKGYEEVHVPALKPKPFGSEEQLLPVEKLPKYAQAGFEGFKTLNRIQSKLYRAALETDENLLLCAPTGAGKTNVALMCMLREIGKHINMDGTINVDDFKIIYIAPMRSLVQEMVGSFGKRLATYGITVAELTGDHQLCKEEISATQIIVCTPEKWDIITRKGGERTYTQLVRLIILDEIHLLHDDRGPVLEALVARAIRNIEMTQEDVRLIGLSATLPNYEDVATFLRVDPAKGLFYFDNSFRPVPLEQTYVGITEKKAIKRFQIMNEIVYEKIMEHAGKNQVLVFVHSRKETGKTARAIRDMCLEKDTLGLFLREGSASTEVLRTEAEQCKNLELKDLLPYGFAIHHAGMTRVDRTLVEDLFADKHIQVLVSTATLAWGVNLPAHTVIIKGTQVYSPEKGRWTELGALDILQMLGRAGRPQYDTKGEGILITSHGELQYYLSLLNQQLPIESQMVSKLPDMLNAEIVLGNVQNAKDAVNWLGYAYLYIRMLRSPTLYGISHDDLKGDPLLDQRRLDLVHTAALMLDKNNLVKYDKKTGNFQVTELGRIASHYYITNDTVQTYNQLLKPTLSEIELFRVFSLSSEFKNITVREEEKLELQKLLERVPIPVKESIEEPSAKINVLLQAFISQLKLEGFALMADMVYVTQSAGRLMRAIFEIVLNRGWAQLTDKTLNLCKMIDKRMWQSMCPLRQFRKLPEEVVKKIEKKNFPFERLYDLNHNEIGELIRMPKMGKTIHKYVHLFPKLELSVHLQPITRSTLKVELTITPDFQWDEKVHGSSEAFWILVEDVDSEVILHHEYFLLKAKYAQDEHLITFFVPVFEPLPPQYFIRVVSDRWLSCETQLPVSFRHLILPEKYPPPTELLDLQPLPVSALRNSAFESLYQDKFPFFNPIQTQVFNTVYNSDDNVFVGAPTGSGKTICAEFAILRMLLQSSEGRCVYITPMEALAEQVYMDWYEKFQDRLNKKVVLLTGETSTDLKLLGKGNIIISTPEKWDILSRRWKQRKNVQNINLFVVDEVHLIGGENGPVLEVICSRMRYISSQIERPIRIVALSSSLSNAKDVAHWLGCSATSTFNFHPNVRPVPLELHIQGFNISHTQTRLLSMAKPVYHAITKHSPKKPVIVFVPSRKQTRLTAIDILTTCAADIQRQRFLHCTEKDLIPYLEKLSDSTLKETLLNGVGYLHEGLSPMERRLVEQLFSSGAIQVVVASRSLCWGMNVAAHLVIIMDTQYYNGKIHAYVDYPIYDVLQMVGHANRPLQDDEGRCVIMCQGSKKDFFKKFLYEPLPVESHLDHCMHDHFNAEIVTKTIENKQDAVDYLTWTFLYRRMTQNPNYYNLQGISHRHLSDHLSELVEQTLSDLEQSKCISIEDEMDVAPLNLGMIAAYYYINYTTIELFSMSLNAKTKVRGLIEIISNAAEYENIPIRHHEDNLLRQLAQKVPHKLNNPKFNDPHVKTNLLLQAHLSRMQLSAELQSDTEEILSKAIRLIQACVDVLSSNGWLSPALAAMELAQMVTQAMWSKDSYLKQLPHFTSEHIKRCTDKGVESVFDIMEMEDEERNALLQLTDSQIADVARFCNRYPNIELSYEVVDKDSIRSGGPVVVLVQLEREEEVTGPVIAPLFPQKREEGWWVVIGDAKSNSLISIKRLTLQQKAKVKLDFVAPATGAHNYTLYFMSDAYMGCDQEYKFSVDVKEAETDSDSD
1HFO , Knot 56 113 0.78 38 88 110
PIFTLNTNIKATDVPSDFLSSTSALVGNILSKPGSYVAVHINTDQQLSFGGSTNPAAFGTLMSIGGIEPSRNRDHSAKLFDHLNTKLGIPKNRMYIHFVNLNGDDVGWNGTTF

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(8JLA_1)}(2) \setminus P_{f(8BCA_1)}(2)|=3\), \(|P_{f(8BCA_1)}(2) \setminus P_{f(8JLA_1)}(2)|=267\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001011101110010000110111001000000001110011100110011001000101000111110010010111110000101101001011100101100101001
Pair \(Z_2\) Length of longest common subsequence
8JLA_1,8BCA_1 270 5
8JLA_1,1HFO_1 135 3
8BCA_1,1HFO_1 281 4

Newick tree

 
[
	8BCA_1:15.24,
	[
		8JLA_1:67.5,1HFO_1:67.5
	]:86.74
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1859 }{\log_{20} 1859}-\frac{112}{\log_{20}112})=454.\)
Status Protein1 Protein2 d d1/2
Query variables 8JLA_1 8BCA_1 569 301
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]