Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JKC_1)}(2) \setminus P_{f(1DNU_1)}(2)|=118\),
\(|P_{f(1DNU_1)}(2) \setminus P_{f(8JKC_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001001101111111010101010010101010101001010101100010111111011001001100100010010000110011101010000111000100000101010100110010101101000101110010000000010111000001101010100010011101100000001110111111000011000010001000000111101101111001100100
Pair
\(Z_2\)
Length of longest common subsequence
8JKC_1,1DNU_1
164
3
8JKC_1,7ZHX_1
190
3
1DNU_1,7ZHX_1
216
3
Newick tree
[
7ZHX_1:10.47,
[
8JKC_1:82,1DNU_1:82
]:25.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{342
}{\log_{20}
342}-\frac{104}{\log_{20}104})=73.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JKC_1
1DNU_1
92
66
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]