Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JIK_1)}(2) \setminus P_{f(5ZZG_1)}(2)|=164\),
\(|P_{f(5ZZG_1)}(2) \setminus P_{f(8JIK_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0001010010100000001011111111000001100000011011010100111101001110011011100001100001011110111011010000011010011001010111110011101110000000001101101001001011011010100101010110000011110101100101110010111001000110000101000111111111110011010100111010101001110101011010010010110001001100010101000100111110110001101100010001001001000100111011100100011100110001100101100101101111101010010011001100010100010111101110110000000100100
Pair
\(Z_2\)
Length of longest common subsequence
8JIK_1,5ZZG_1
196
3
8JIK_1,4XJU_1
136
4
5ZZG_1,4XJU_1
194
4
Newick tree
[
5ZZG_1:10.51,
[
8JIK_1:68,4XJU_1:68
]:37.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{574
}{\log_{20}
574}-\frac{153}{\log_{20}153})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JIK_1
5ZZG_1
158
107
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]