Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8JHY_1)}(2) \setminus P_{f(3DWD_1)}(2)|=125\),
\(|P_{f(3DWD_1)}(2) \setminus P_{f(8JHY_1)}(2)|=43\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000101110111001001001000100100010010010101010010001011101010000010101101011011000011101000101111000000010111100011100101101001101110010010010000101010001110010100001100001100010000111010010000010100101101011100011101100101011010011000010100001011011101011101000100011010100011000000110110010100010111110001000110110100111111000010011100011111010100110110
Pair
\(Z_2\)
Length of longest common subsequence
8JHY_1,3DWD_1
168
4
8JHY_1,9DEF_1
160
4
3DWD_1,9DEF_1
130
4
Newick tree
[
8JHY_1:86.96,
[
9DEF_1:65,3DWD_1:65
]:21.96
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{503
}{\log_{20}
503}-\frac{147}{\log_{20}147})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8JHY_1
3DWD_1
131
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]