Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IVW_1)}(2) \setminus P_{f(4CAP_1)}(2)|=81\),
\(|P_{f(4CAP_1)}(2) \setminus P_{f(8IVW_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000000010100110110100001101001101000100000011101101000111010101010000000011010010000101110001011110110010110101000010011110100011001000000010010101001111000100100010111010101110111101000110110100000110110111011111100010001001000011101010001111001101000110001100100011111001011000101000000101010000101000110101000000101010110110111001110000001001000010100010011100010000110100010011100101111001101010010011110101110010011000111110111100010100000011010110110000111101101011001101011010010111101101100101101011100101000101001001001000010110101000010100101111001010100101111110101110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1005
}{\log_{20}
1005}-\frac{422}{\log_{20}422})=153.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IVW_1
4CAP_1
191
166.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]