Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ITM_1)}(2) \setminus P_{f(5EWV_1)}(2)|=151\),
\(|P_{f(5EWV_1)}(2) \setminus P_{f(8ITM_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100010111000011010001110011101111111000100101111000000001000011100011100101100110010110111111110110010000001010110011101111100001110111011001111100111100010110000111000111101101001111111000101000111111111111111111001000000100001011111100111101110111110111111001000010000001011000111111111001111110000101110110111011100101111011001100010001001100001000110000
Pair
\(Z_2\)
Length of longest common subsequence
8ITM_1,5EWV_1
198
4
8ITM_1,9ESJ_1
174
4
5EWV_1,9ESJ_1
168
3
Newick tree
[
8ITM_1:96.06,
[
9ESJ_1:84,5EWV_1:84
]:12.06
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{476
}{\log_{20}
476}-\frac{116}{\log_{20}116})=107.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ITM_1
5EWV_1
133
89
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]