Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IMO_1)}(2) \setminus P_{f(7VYE_1)}(2)|=221\),
\(|P_{f(7VYE_1)}(2) \setminus P_{f(8IMO_1)}(2)|=9\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110111011001000000010110011101101010101111011101100111011101011101100100001101100101101000000010001011101011010101110000101110110001110001100001001000100101010111011100010000110000000110100011110110001010101011000100101000100000100110011101011000010010110011010111110000000010110100011011011011111110100010011111111011001100000100010111110110101011100001011101100011100011000010010001001010101110111000100001100000001101000111101100010110010110001001010001000000011100111110110001100111101110100101100000000101101000100110000010010011000001011000000100010101110010101011100001011101100011100011000011010001001010101110111000000101101100001101000111101100010100011100001001010001000000001100011110110001100001100110100101000001001100101000110001000100011011000001010101010100010101110010101011000010111011000111000110000111100010010101011100110001000011010000011010001111011000101000101000010010100010000000011000111101100011010011001101001010000110001011010001001100111010100110110010011001011000101011100011010111000010111011000111000110000101100010010101011100110001001011011100011010001111011000101000111000010010100010000000011000111101100011000011001101001011001001010001001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1222
}{\log_{20}
1222}-\frac{40}{\log_{20}40})=328.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IMO_1
7VYE_1
277
145.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]