Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IHJ_1)}(2) \setminus P_{f(3LZI_1)}(2)|=45\),
\(|P_{f(3LZI_1)}(2) \setminus P_{f(8IHJ_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011110011011110000000010100010010001011001001101001100101111010010110100001001010010011011110100110110010100101110010000010100010000100011010000001100011101111111101111111011111110101001000011110111101111101111100010000101101100111111110001011110111100010110100110010010111100111110111010110001110010101010101000101001111101111111111001011101000010001010011011111111111011101110101111100010000010001011111010100100110111001001011011001100010001010100000001010101000011101111001011010011100000000100000110100011001000101010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1433
}{\log_{20}
1433}-\frac{530}{\log_{20}530})=229.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IHJ_1
3LZI_1
297
234.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]