Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IAX_1)}(2) \setminus P_{f(6ABJ_1)}(2)|=97\),
\(|P_{f(6ABJ_1)}(2) \setminus P_{f(8IAX_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100100010111011111010110011001011001010101001101101110010101001000001001101011001110011111000110100011010100000001001011000110000011110111110100010110011100101110111000100010101000111100011011000111111100000010111001101111011001001001011000010101011101000011001001101101111101011101110111100011100101110111010011001000101000010011011101001011010010100110010011010001011100010100001000000011101100100010101110100010010110000101011110100100011110111111100110000011011000110111100100111111111101100001010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{866
}{\log_{20}
866}-\frac{345}{\log_{20}345})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IAX_1
6ABJ_1
177
144.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]