Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8IAB_1)}(2) \setminus P_{f(7YFC_1)}(2)|=122\),
\(|P_{f(7YFC_1)}(2) \setminus P_{f(8IAB_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000101010000001000100100001001110000010001111111010010010001000011000100000101100111010110111110111101101110011100111110011000110111110110111011101111011101111111010101011001011110011101110111111110110011110110011011101110000101011001000000001100101011011100111111111001101100111100110011111110111010001001111011111101001010001101111011111111110100011001101001100010100111011101100101111111100010010100101001001010010010100001001110000011001100001001111011111110011111011110101111111111010101110111000010011011111101111010101010111101000111111011111110011001010100111010111110101011100101101001011110101100110110110000001111101100001001011110101101100011100000000101000101101100000100111000010101010110000100110010110111110011100111110101011011111100001010011011101000001010
Pair
\(Z_2\)
Length of longest common subsequence
8IAB_1,7YFC_1
164
4
8IAB_1,7FPR_1
214
4
7YFC_1,7FPR_1
196
3
Newick tree
[
7FPR_1:10.60,
[
8IAB_1:82,7YFC_1:82
]:26.60
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1136
}{\log_{20}
1136}-\frac{361}{\log_{20}361})=204.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8IAB_1
7YFC_1
255
186
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]