Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HSJ_1)}(2) \setminus P_{f(4MMB_1)}(2)|=57\),
\(|P_{f(4MMB_1)}(2) \setminus P_{f(8HSJ_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100000100011000011001110101110011101000100001111110000010110110101010001011100010010001111011110001101100111010110000001011010110010101100010100101011000101000100100011011111101001111111011000110011011100010101111110001001001000101101110010011000101101100010011001101111100100110100110110100101110011101100111110010111010111011100100100111001010101010100010000111110110010000011110010001111001110101101101111011000000011101110
Pair
\(Z_2\)
Length of longest common subsequence
8HSJ_1,4MMB_1
128
4
8HSJ_1,4DBH_1
146
4
4MMB_1,4DBH_1
162
4
Newick tree
[
4DBH_1:81.00,
[
8HSJ_1:64,4MMB_1:64
]:17.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{947
}{\log_{20}
947}-\frac{428}{\log_{20}428})=137.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HSJ_1
4MMB_1
168
154.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]