Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HOJ_1)}(2) \setminus P_{f(3VOH_1)}(2)|=98\),
\(|P_{f(3VOH_1)}(2) \setminus P_{f(8HOJ_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001011111011100110010110111000001010111001000001000010000010001010110110000001000100100110111001000111111011000110110011110011100110111110011010100000100100001010110101111101111111011110001100100110001111001001001110011001011010111111110000111100110011000100011110110110100101001111100010011101001001010000000011101110000111011111101111001111111000110001001111111101110100010111110001110110100010101000101110001011100111000110001001000100111011000010011100110011
Pair
\(Z_2\)
Length of longest common subsequence
8HOJ_1,3VOH_1
159
5
8HOJ_1,2WKN_1
158
4
3VOH_1,2WKN_1
173
4
Newick tree
[
3VOH_1:84.38,
[
8HOJ_1:79,2WKN_1:79
]:5.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{837
}{\log_{20}
837}-\frac{373}{\log_{20}373})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HOJ_1
3VOH_1
160
142
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]