Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HFQ_1)}(2) \setminus P_{f(8GZE_1)}(2)|=52\),
\(|P_{f(8GZE_1)}(2) \setminus P_{f(8HFQ_1)}(2)|=120\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110011001000101100001011110100101110110110001001101110110001100000010011100010000100110010110001111101110001111100100010101010101100101001101010001000100110110
Pair
\(Z_2\)
Length of longest common subsequence
8HFQ_1,8GZE_1
172
4
8HFQ_1,7KJB_1
201
3
8GZE_1,7KJB_1
179
3
Newick tree
[
7KJB_1:98.02,
[
8HFQ_1:86,8GZE_1:86
]:12.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{428
}{\log_{20}
428}-\frac{162}{\log_{20}162})=79.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HFQ_1
8GZE_1
101
80.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]