8HET_1|Chain A|Procathepsin L|Homo sapiens (9606)
>3HGO_1|Chains A, B|12-oxophytodienoate reductase 3|Solanum lycopersicum (4081)
>9DWD_1|Chains A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R|Gag|Human immunodeficiency virus type 1 (NEW YORK-5 ISOLATE) (11698)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HET_1)}(2) \setminus P_{f(3HGO_1)}(2)|=53\),
\(|P_{f(3HGO_1)}(2) \setminus P_{f(8HET_1)}(2)|=116\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100101000101011000100100111010111010110001011010000110001101001001111001100100011100000010010000000010001100011101100001110111011110111011000111000110101000000100111111011000000000011100011001111101011000000011101100101
Pair
\(Z_2\)
Length of longest common subsequence
8HET_1,3HGO_1
169
4
8HET_1,9DWD_1
158
3
3HGO_1,9DWD_1
177
4
Newick tree
[
3HGO_1:88.88,
[
8HET_1:79,9DWD_1:79
]:9.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{622
}{\log_{20}
622}-\frac{220}{\log_{20}220})=113.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HET_1
3HGO_1
143
109
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]