Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8GFQ_1)}(2) \setminus P_{f(9EOI_1)}(2)|=156\),
\(|P_{f(9EOI_1)}(2) \setminus P_{f(8GFQ_1)}(2)|=48\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001111010010001001000000110000100110000100001001000110011010001001111010101001000000100110101000010100111110100000001100100001010011111000011001100001011101000000001010001100110011100110011100001010001101010010000110111011000000110011001100100000000111111110000001001000001010010100100011101001010000001010011110010001001010010111001000001110101100000100001111000010000000011111110000011101101001111101111110011000101101000111010110011000100100010011111010011111000111000110010101110101110000010100111001100011000101001100110001001000
Pair
\(Z_2\)
Length of longest common subsequence
8GFQ_1,9EOI_1
204
4
8GFQ_1,6VBP_1
180
3
9EOI_1,6VBP_1
156
3
Newick tree
[
8GFQ_1:10.52,
[
6VBP_1:78,9EOI_1:78
]:23.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{753
}{\log_{20}
753}-\frac{209}{\log_{20}209})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8GFQ_1
9EOI_1
189
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]