Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8FTB_1)}(2) \setminus P_{f(1QRP_1)}(2)|=121\),
\(|P_{f(1QRP_1)}(2) \setminus P_{f(8FTB_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001110011111010101101100101010011001001100011011111100111110000100111101101100011001001000000011010110101001110000010011101010111000000011001100000010110010010001100000111000110000010000110101101010001101001101001001111000101110000000111101001110001000100011010000101001010100101100100011011110001010001110111100001101000000110010100100111010010101100001000100001001101111010111000000001110100000110001010000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{737
}{\log_{20}
737}-\frac{326}{\log_{20}326})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8FTB_1
1QRP_1
148
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]