Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8FOK_1)}(2) \setminus P_{f(6VBQ_1)}(2)|=208\),
\(|P_{f(6VBQ_1)}(2) \setminus P_{f(8FOK_1)}(2)|=15\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000100100101100100100001000010010001000000100000110001110001110100110001001000000000101100000000010000000100110000000011101000000011100100111010010100101111001000100010001000100101000000011100010101000000010100011010000100100100110010001111000001100011101101001100000000000111000010010000010100000100011101110111101101000100000110111010000110100001011110000100011111010100000101110101100011111001001001000111111000110010101001000101101100000101111000100000011001000010011110001100111000111101101011010010010001101010010010100000110100101010011010000001101010100010100111001010010011011000011111111100011101011000011100101110100101111001001010111001001011010011001000110011010001001110010010110011001100101000010100100100000001101000010000010010111000100011010100010110100010011101110011100110000111001000111110001000010000000001011100001000111110100110000111101001010110010101001000000100110111001001111011101100000100110000010001000100011010100101011010001010111111000100111000011001011110100001110010000101101111100110000011010100110011101000011101010001010011010110100001011000101011001100001001100100010010101000010100001010100010101110011110111010011011011011011100000100110011101100101100111000011101000100011111001100100101101001111000001000110001001001011000100100100010101001000001111111000000100011000000011011010001000101010100111100000001110001011100010010011100000000100011010011000000000101101100100100010000101100000011001001100010001000101001101110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1698
}{\log_{20}
1698}-\frac{230}{\log_{20}230})=378.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8FOK_1
6VBQ_1
483
277.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]