Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8FJZ_1)}(2) \setminus P_{f(2KTU_1)}(2)|=124\),
\(|P_{f(2KTU_1)}(2) \setminus P_{f(8FJZ_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000001100001010101011010110001000001100111100101101000101011110110101000100100011110000010111001001110011101010111010010010101001010010001101110100000100010110111001101011011101011101100101110101111011111101100010011011101101101011110101101111100010011010001010111001101010001000101001100011001110011110110010011011011010000
Pair
\(Z_2\)
Length of longest common subsequence
8FJZ_1,2KTU_1
170
6
8FJZ_1,7IJQ_1
166
3
2KTU_1,7IJQ_1
140
3
Newick tree
[
8FJZ_1:88.18,
[
7IJQ_1:70,2KTU_1:70
]:18.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{501
}{\log_{20}
501}-\frac{170}{\log_{20}170})=96.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
8FJZ_1
2KTU_1
123
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]