Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8FCL_1)}(2) \setminus P_{f(7EOJ_1)}(2)|=273\),
\(|P_{f(7EOJ_1)}(2) \setminus P_{f(8FCL_1)}(2)|=9\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011000100100111000001001110011000001101001010010110100111010000011011100000000010100110001010110110101010100100101111000101101011010101011010011001011110111011010110001010011110011000101100000000100110001110000110100110111001111011110110111101111010011101110001111111011011001110000010011001000111111100101111000000101000110011011011000101111110001001011100110100010111101010101101000010110010100110000101110111100011101100010110100001010110011101001011100001011000110110101001111001000100110011001001101110100111101111010011101110000101101011011011110001010011001001110111100100110101101101111100110011001011000001111110001011011110110100110111100000111101010001110010101110100110110100100010011100010001000000000101101000011101000010011011000100001000011100100001110101101001111100101110110100000000101
Pair
\(Z_2\)
Length of longest common subsequence
8FCL_1,7EOJ_1
282
3
8FCL_1,3MNH_1
166
4
7EOJ_1,3MNH_1
186
2
Newick tree
[
7EOJ_1:12.32,
[
8FCL_1:83,3MNH_1:83
]:46.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{855
}{\log_{20}
855}-\frac{49}{\log_{20}49})=232.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8FCL_1
7EOJ_1
292
152.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]