Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8EEW_1)}(2) \setminus P_{f(8AVL_1)}(2)|=178\),
\(|P_{f(8AVL_1)}(2) \setminus P_{f(8EEW_1)}(2)|=26\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000100000010010000010010001100010000110010000001001110000011000010001101000110110000100000001101111100011000110111010111010101100011010100110011110000001010000011110001010100010010010100101010111100111101111100100111100000110100101001011110100101010001100110010101000111100101100011010010011010111101110111101010000010110000001100001100011010010000101110001101100010001001010010100010000101001000011001000110011010010100100110001100100011001011110010010100010101001000011001101110010001001100101000001100100110000100001001100010110001100001000001011101100110101000001100111101000110100000000100000001001100000011011000100100010001101010110001001000011001100001000110000001100010000111110100111101001000100001001000100110011001000101101001011001001001000101110110000
Pair
\(Z_2\)
Length of longest common subsequence
8EEW_1,8AVL_1
204
4
8EEW_1,3PAQ_1
226
3
8AVL_1,3PAQ_1
158
3
Newick tree
[
8EEW_1:11.62,
[
8AVL_1:79,3PAQ_1:79
]:36.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{958
}{\log_{20}
958}-\frac{192}{\log_{20}192})=209.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8EEW_1
8AVL_1
266
164
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]