Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8EEC_1)}(2) \setminus P_{f(6GOL_1)}(2)|=164\),
\(|P_{f(6GOL_1)}(2) \setminus P_{f(8EEC_1)}(2)|=27\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000101111011010110100011100100000011111001111100000010101111000011001001110101001010000111110000001101110101001111001100010000100100110110011111011100011110100110011110011111101101111101110011110111011011001110010111100111010000011101001000111111010101101010110110010111001101111111010111001101111100011001001010101110101111000110010110010100
Pair
\(Z_2\)
Length of longest common subsequence
8EEC_1,6GOL_1
191
3
8EEC_1,1MOE_1
173
4
6GOL_1,1MOE_1
160
3
Newick tree
[
8EEC_1:94.52,
[
1MOE_1:80,6GOL_1:80
]:14.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{415
}{\log_{20}
415}-\frac{72}{\log_{20}72})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8EEC_1
6GOL_1
134
80.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]