Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8DTE_1)}(2) \setminus P_{f(7DYA_1)}(2)|=81\),
\(|P_{f(7DYA_1)}(2) \setminus P_{f(8DTE_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000001011011101000100110110010110101010101110101001011111011001001000111001001110000101101001010100011100110011101011111001101010000011000000111010011010000110110101101111010100110
Pair
\(Z_2\)
Length of longest common subsequence
8DTE_1,7DYA_1
154
3
8DTE_1,8HWS_1
170
3
7DYA_1,8HWS_1
158
3
Newick tree
[
8HWS_1:83.67,
[
8DTE_1:77,7DYA_1:77
]:6.67
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{347
}{\log_{20}
347}-\frac{164}{\log_{20}164})=55.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
8DTE_1
7DYA_1
70
66.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]