Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8DGF_1)}(2) \setminus P_{f(8CEO_1)}(2)|=76\),
\(|P_{f(8CEO_1)}(2) \setminus P_{f(8DGF_1)}(2)|=23\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101001010100010101011001110001011111100000011000110000011110001000010000101101100000101110011100000110100000101000100010011000010101010001000110111011011001111100001100110100011011000000000110010001010000101000001011000110001111010111100111001001000001101101001000010011110110010010000100111100100110100101100110111000101110000001101001110100101101110010010110100001101100101101100110100010100100100101000110011100010000011101100100101110110001110011001111001110110001000111000101001001000011001100111000100110001110000101111011010110011000111111100000111001000110000011001011101100010001100111000011010011001010110011011000100111001011111100100000110000100111100001010001010100000011001101111101010011101100010001010101101110010001111011001101101110011000100000101000111100000001001000110111000100010111010000010110001100010010111001011000100011000010010001100101110011100100100011001111110000010101110011111100010110111000011010100111000000011010011110000001000001010001000001001110001100001000011000011101100000011001000010001010110100001010000000110101010101010000001100000010010101110000000000000110000101110000011001000110010110101110100111100100100000000001111000111001000010010001101111100001100001001111011000011111100011101110011100100100111111110100111000110000001000100101001110000001001100010100110100101011001101111001010000110111001000110010000100110001100110101011100110010111011010011001100111100010001011011011100110100010001010011000111001100000110010000001100100011001001001100100110001001101100110100011000100001001001100010000001000001000111110111001011101000011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2365
}{\log_{20}
2365}-\frac{778}{\log_{20}778})=382.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8DGF_1
8CEO_1
481
357.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]