Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8DAU_1)}(2) \setminus P_{f(1TQR_1)}(2)|=268\),
\(|P_{f(1TQR_1)}(2) \setminus P_{f(8DAU_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001100001110101101000000101110000000111100110000011110000100101101001110100000011111100010011001001100010101101101010101001001011111001011010110111010110100110010011101110010101101010001111000110101011000000001001100011100001101001101110010110111101101111011110100111011100011111110110110011100000100110010001111111001001110000001010001100110110110100011111100010010111001101000101111010101011010000101100101011110001011101101000111001000101101000010101100111010010111100010110001100101010011110010001000100111010000011101001111011110100111011100101011010110110110100000100110010111101111001001101011011011110001100110010110100011111100010010111101101001101111000101011010100011011101011101001101101101100110011000101000001000101010010100011010001010111010000110110010001001010000100001010010100101001111001000100000110111111100100000100
Pair
\(Z_2\)
Length of longest common subsequence
8DAU_1,1TQR_1
271
3
8DAU_1,8XZK_1
279
3
1TQR_1,8XZK_1
14
3
Newick tree
[
8DAU_1:15.73,
[
1TQR_1:7,8XZK_1:7
]:15.73
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{855
}{\log_{20}
855}-\frac{17}{\log_{20}17})=245.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8DAU_1
1TQR_1
303
154
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]