Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8CUT_1)}(2) \setminus P_{f(2KQA_1)}(2)|=41\),
\(|P_{f(2KQA_1)}(2) \setminus P_{f(8CUT_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010000001001110111111101100101110100011010100111111110110010010011010001101010010110011011001101001101010110101001011001101100110101100100111010100
Pair
\(Z_2\)
Length of longest common subsequence
8CUT_1,2KQA_1
122
3
8CUT_1,8BAE_1
68
1
2KQA_1,8BAE_1
108
1
Newick tree
[
2KQA_1:63.55,
[
8CUT_1:34,8BAE_1:34
]:29.55
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{277
}{\log_{20}
277}-\frac{129}{\log_{20}129})=46.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
8CUT_1
2KQA_1
53
47
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]